A Recurrent Neural Network Approach for Predicting Glucose Concentration in Type-1 Diabetic Patients
نویسندگان
چکیده
Estimation of future glucose concentration is important for diabetes management. To develop a model predictive control (MPC) system that measures the glucose concentration and automatically inject the amount of insulin needed to keep the glucose level within its normal range, the accuracy of the predicted glucose level and the longer prediction time are major factors affecting the performance of the control system. The predicted glucose values can be used for early hypoglycemic/hyperglycemic alarms for adjustment of insulin injections or insulin infusion rates of manual or automated pumps. Recent developments in continuous glucose monitoring (CGM) devices open new opportunities for glycemia management of diabetic patients. In this article a new technique, which uses a recurrent neural network (RNN) and data obtained from CGM device, is proposed to predict the future values of the glucose concentration for prediction horizons (PH) of 15, 30, 45, 60 minutes. The results of the proposed technique is evaluated and compared relative to that obtained from a feed forward neural network prediction model (NNM). Our results indicate that, the RNN is better in prediction than the NNM for the relatively long prediction horizons.
منابع مشابه
Robust Adaptive Neural Control of the Blood Glucose for Type 1 Diabetic Patients in Presence of Meals
In this paper, the blood glucose control for type 1 diabetic patients in the presence of model uncertainties and uncertain meals is considered. In order to present an efficient control approach, it is assumed that the dynamics describe the mechanism of the blood glucose regulation in type 1 diabetic patients are completely unknown. Hence, based on the universal approximation property of the rad...
متن کاملEvaluation of Using a Recurrent Neural Network (RNN) and a Fuzzy Logic Controller (FLC) In Closed Loop System to Regulate Blood Glucose for Type-1 Diabetic Patients
Type-1 diabetes is a disease characterized by high blood-glucose level. Using a fully automated closed loop control system improves the quality of life for type1 diabetic patients. In this paper, a scalable closed loop blood glucose regulation system which is tuned to each patient is presented. This control system doesn't need any data entry from the patient. A recurrent neural network (RNN) is...
متن کاملNEURAL NETWORK MODELS FOR THE BLOOD GLUCOSE METABOLISM OF A DIABETIC 1 Neural Network Models for the Blood Glucose Metabolism of a Diabetic
We study the application of neural networks to modeling the blood glucose metabolism of a diabetic. In particular we consider recurrent neural networks and time series convolution neural networks which we compare to linear models and to nonlinear compartment models. We include a linear error model to take into account the uncertainty in the system and for handling missing blood glucose observat...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011